160 research outputs found

    Computing Invariants of Simplicial Manifolds

    Full text link
    This is a survey of known algorithms in algebraic topology with a focus on finite simplicial complexes and, in particular, simplicial manifolds. Wherever possible an elementary approach is chosen. This way the text may also serve as a condensed but very basic introduction to the algebraic topology of simplicial manifolds. This text will appear as a chapter in the forthcoming book "Triangulated Manifolds with Few Vertices" by Frank H. Lutz.Comment: 13 pages, 3 figure

    Computing Optimal Morse Matchings

    Full text link
    Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results

    Convergent Puiseux Series and Tropical Geometry of Higher Rank

    Full text link
    We propose to study the tropical geometry specifically arising from convergent Puiseux series in multiple indeterminates. One application is a new view on stable intersections of tropical hypersurfaces. Another one is the study of families of ordinary convex polytopes depending on more than one parameter through tropical geometry. This includes cubes constructed by Goldfarb and Sit (1979) as special cases.Comment: 32 pages, 3 figure

    Branched Coverings, Triangulations, and 3-Manifolds

    Full text link
    A canonical branched covering over each sufficiently good simplicial complex is constructed. Its structure depends on the combinatorial type of the complex. In this way, each closed orientable 3-manifold arises as a branched covering over the 3-sphere from some triangulation of S^3. This result is related to a theorem of Hilden and Montesinos. The branched coverings introduced admit a rich theory in which the group of projectivities plays a central role.Comment: v2: several changes to the text body; minor correction

    Splitting Polytopes

    Full text link
    A split of a polytope PP is a (regular) subdivision with exactly two maximal cells. It turns out that each weight function on the vertices of PP admits a unique decomposition as a linear combination of weight functions corresponding to the splits of PP (with a split prime remainder). This generalizes a result of Bandelt and Dress [Adv. Math. 92 (1992)] on the decomposition of finite metric spaces. Introducing the concept of compatibility of splits gives rise to a finite simplicial complex associated with any polytope PP, the split complex of PP. Complete descriptions of the split complexes of all hypersimplices are obtained. Moreover, it is shown that these complexes arise as subcomplexes of the tropical (pre-)Grassmannians of Speyer and Sturmfels [Adv. Geom. 4 (2004)].Comment: 25 pages, 7 figures; minor corrections and change

    Geometric Reasoning with polymake

    Full text link
    The mathematical software system polymake provides a wide range of functions for convex polytopes, simplicial complexes, and other objects. A large part of this paper is dedicated to a tutorial which exemplifies the usage. Later sections include a survey of research results obtained with the help of polymake so far and a short description of the technical background
    corecore